libbpf

unknown

May 02, 2024

libbpf Overview

Program Types and ELF Sections
API naming convention

API documentation convention

Building libbpf

CONTENTS

11
15

17

libbpf

If you are looking to develop BPF applications using the libbpf library, this directory contains important documentation
that you should read.

To get started, it is recommended to begin with the libbpf Overview document, which provides a high-level understand-
ing of the libbpf APIs and their usage. This will give you a solid foundation to start exploring and utilizing the various
features of libbpf to develop your BPF applications.

CONTENTS 1

libbpf

2 CONTENTS

CHAPTER
ONE

LIBBPF OVERVIEW

libbpf is a C-based library containing a BPF loader that takes compiled BPF object files and prepares and loads them
into the Linux kernel. libbpf takes the heavy lifting of loading, verifying, and attaching BPF programs to various kernel
hooks, allowing BPF application developers to focus only on BPF program correctness and performance.

The following are the high-level features supported by libbpf:

* Provides high-level and low-level APIs for user space programs to interact with BPF programs. The low-level
APIs wrap all the bpf system call functionality, which is useful when users need more fine-grained control over
the interactions between user space and BPF programs.

* Provides overall support for the BPF object skeleton generated by bpftool. The skeleton file simplifies the process
for the user space programs to access global variables and work with BPF programs.

* Provides BPF-side APIS, including BPF helper definitions, BPF maps support, and tracing helpers, allowing
developers to simplify BPF code writing.

* Supports BPF CO-RE mechanism, enabling BPF developers to write portable BPF programs that can be compiled
once and run across different kernel versions.

This document will delve into the above concepts in detail, providing a deeper understanding of the capabilities and
advantages of libbpf and how it can help you develop BPF applications efficiently.

1.1 BPF App Lifecycle and libbpf APIs

A BPF application consists of one or more BPF programs (either cooperating or completely independent), BPF maps,
and global variables. The global variables are shared between all BPF programs, which allows them to cooperate on
a common set of data. libbpf provides APIs that user space programs can use to manipulate the BPF programs by
triggering different phases of a BPF application lifecycle.

The following section provides a brief overview of each phase in the BPF life cycle:

* Open phase: In this phase, libbpf parses the BPF object file and discovers BPF maps, BPF programs, and global
variables. After a BPF app is opened, user space apps can make additional adjustments (setting BPF program
types, if necessary; pre-setting initial values for global variables, etc.) before all the entities are created and
loaded.

* Load phase: In the load phase, libbpf creates BPF maps, resolves various relocations, and verifies and loads
BPF programs into the kernel. At this point, libbpf validates all the parts of a BPF application and loads the BPF
program into the kernel, but no BPF program has yet been executed. After the load phase, it’s possible to set up
the initial BPF map state without racing with the BPF program code execution.

« Attachment phase: In this phase, libbpf attaches BPF programs to various BPF hook points (e.g., tracepoints,
kprobes, cgroup hooks, network packet processing pipeline, etc.). During this phase, BPF programs perform

libbpf

useful work such as processing packets, or updating BPF maps and global variables that can be read from user
space.

* Tear down phase: In the tear down phase, libbpf detaches BPF programs and unloads them from the kernel.
BPF maps are destroyed, and all the resources used by the BPF app are freed.

1.2 BPF Object Skeleton File

BPF skeleton is an alternative interface to libbpf APIs for working with BPF objects. Skeleton code abstract away
generic libbpf APIs to significantly simplify code for manipulating BPF programs from user space. Skeleton code
includes a bytecode representation of the BPF object file, simplifying the process of distributing your BPF code. With
BPF bytecode embedded, there are no extra files to deploy along with your application binary.

You can generate the skeleton header file (. skel.h) for a specific object file by passing the BPF object to the bpftool.
The generated BPF skeleton provides the following custom functions that correspond to the BPF lifecycle, each of them
prefixed with the specific object name:

e <name>__open() — creates and opens BPF application (<name> stands for the specific bpf object name)
¢ <name>__load() - instantiates, loads,and verifies BPF application parts

e <name>__attach() — attaches all auto-attachable BPF programs (it’s optional, you can have more control by
using libbpf APIs directly)

¢ <name>__destroy() — detaches all BPF programs and frees up all used resources

Using the skeleton code is the recommended way to work with bpf programs. Keep in mind, BPF skeleton provides
access to the underlying BPF object, so whatever was possible to do with generic libbpf APIs is still possible even when
the BPF skeleton is used. It’s an additive convenience feature, with no syscalls, and no cumbersome code.

1.2.1 Other Advantages of Using Skeleton File

* BPF skeleton provides an interface for user space programs to work with BPF global variables. The skeleton
code memory maps global variables as a struct into user space. The struct interface allows user space programs
to initialize BPF programs before the BPF load phase and fetch and update data from user space afterward.

* The skel.h file reflects the object file structure by listing out the available maps, programs, etc. BPF skeleton
provides direct access to all the BPF maps and BPF programs as struct fields. This eliminates the need for string-
based lookups with bpf_object_find_map_by_name() and bpf_object_find_program_by_name()
APISs, reducing errors due to BPF source code and user-space code getting out of sync.

* The embedded bytecode representation of the object file ensures that the skeleton and the BPF object file are
always in sync.

1.3 BPF Helpers

libbpf provides BPF-side APIs that BPF programs can use to interact with the system. The BPF helpers definition
allows developers to use them in BPF code as any other plain C function. For example, there are helper functions
to print debugging messages, get the time since the system was booted, interact with BPF maps, manipulate network
packets, etc.

For a complete description of what the helpers do, the arguments they take, and the return value, see the bpf-helpers
man page.

4 Chapter 1. libbpf Overview

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

libbpf

1.4 BPF CO-RE (Compile Once — Run Everywhere)

BPF programs work in the kernel space and have access to kernel memory and data structures. One limitation that BPF
applications come across is the lack of portability across different kernel versions and configurations. BCC is one of
the solutions for BPF portability. However, it comes with runtime overhead and a large binary size from embedding
the compiler with the application.

libbpf steps up the BPF program portability by supporting the BPF CO-RE concept. BPF CO-RE brings together BTF
type information, libbpf, and the compiler to produce a single executable binary that you can run on multiple kernel
versions and configurations.

To make BPF programs portable libbpf relies on the BTF type information of the running kernel. Kernel also exposes
this self-describing authoritative BTF information through sysfs at /sys/kernel/btf/vmlinux.

You can generate the BTF information for the running kernel with the following command:

[$ bpftool btf dump file /sys/kernel/btf/vmlinux format c > vmlinux.h]

The command generates a vmlinux.h header file with all kernel types (BTF types) that the running kernel uses.
Including vmlinux.h in your BPF program eliminates dependency on system-wide kernel headers.

libbpf enables portability of BPF programs by looking at the BPF program’s recorded BTF type and relocation infor-
mation and matching them to BTF information (vmlinux) provided by the running kernel. libbpf then resolves and
matches all the types and fields, and updates necessary offsets and other relocatable data to ensure that BPF program’s
logic functions correctly for a specific kernel on the host. BPF CO-RE concept thus eliminates overhead associated
with BPF development and allows developers to write portable BPF applications without modifications and runtime
source code compilation on the target machine.

The following code snippet shows how to read the parent field of a kernel task_struct using BPF CO-RE and libbf.
The basic helper to read a field in a CO-RE relocatable manner is bpf_core_read(dst, sz, src), which will read
sz bytes from the field referenced by src into the memory pointed to by dst.

S

struct task_struct *task = (void *)bpf_get_current_task();
struct task_struct *parent_task;

int err;

err = bpf_core_read(&parent_task, sizeof(void *), &task->parent);
if (err) {
/* handle error */

}

/% parent_task contains the value of task->parent pointer */

In the code snippet, we first get a pointer to the current task_struct using bpf_get_current_task(). We then use
bpf_core_read() to read the parent field of task struct into the parent_task variable. bpf_core_read() is just
like bpf_probe_read_kernel () BPF helper, except it records information about the field that should be relocated
on the target kernel. i.e, if the parent field gets shifted to a different offset within struct task_struct due to some
new field added in front of it, libbpf will automatically adjust the actual offset to the proper value.

1.4. BPF CO-RE (Compile Once — Run Everywhere) 5

https://github.com/iovisor/bcc/

libbpf

1.5 Getting Started with libbpf

Check out the libbpf-bootstrap repository with simple examples of using libbpf to build various BPF applications.

See also libbpf API documentation.

1.6 libbpf and Rust

If you are building BPF applications in Rust, it is recommended to use the Libbpf-rs library instead of bindgen bindings
directly to libbpf. Libbpf-rs wraps libbpf functionality in Rust-idiomatic interfaces and provides libbpf-cargo plugin to
handle BPF code compilation and skeleton generation. Using Libbpf-rs will make building user space part of the BPF
application easier. Note that the BPF program themselves must still be written in plain C.

1.7 Additional Documentation

* Program types and ELF Sections

* API naming convention

Building libbpf

API documentation Convention

6 Chapter 1. libbpf Overview

https://github.com/libbpf/libbpf-bootstrap
https://libbpf.readthedocs.io/en/latest/api.html
https://github.com/libbpf/libbpf-rs
https://libbpf.readthedocs.io/en/latest/program_types.html
https://libbpf.readthedocs.io/en/latest/libbpf_naming_convention.html
https://libbpf.readthedocs.io/en/latest/libbpf_build.html
https://libbpf.readthedocs.io/en/latest/libbpf_naming_convention.html#api-documentation-convention

CHAPTER
TWO

PROGRAM TYPES AND ELF SECTIONS

The table below lists the program types, their attach types where relevant and the ELF section names supported by

libbpf for them. The ELF section names follow these rules:

* type is an exact match, e.g. SEC("socket")

* type+ means it can be either exact SEC("type") or well-formed SEC("type/extras") with a ‘/’ separator
between type and extras.

When extras are specified, they provide details of how to auto-attach the BPF program. The format of extras
depends on the program type, e.g. SEC("tracepoint/<category>/<name>") for tracepoints or SEC("usdt/
<path>:<provider>:<name>") for USDT probes. The extras are described in more detail in the footnotes.

Program Type

Attach Type

ELF Section Name

Sleepable

BPF_PROG_TYPE_CGROUP_]
BPF_PROG_TYPE_CGROUP_

BPF_PROG_TYPE_CGROUP_

BPF_PROG_TYPE_CGROUP_

BPF_PROG_TYPE_CGROUP_

BPF_CGROUP_DEVICE

BPF_CGROUP_INET_EGRES
BPF_CGROUP_INET_INGRE
BPF_CGROUP_GETSOCKOPT
BPF_CGROUP_SETSOCKOPT
BPF_CGROUP_INET4_BIND
BPF_CGROUP_INET4_CONN
BPF_CGROUP_INET4_GETP
BPF_CGROUP_INET4_GETS!
BPF_CGROUP_INET6_BIND
BPF_CGROUP_INET6_CONN
BPF_CGROUP_INET6_GETP
BPF_CGROUP_INET6_GETS!
BPF_CGROUP_UDP4_RECVM
BPF_CGROUP_UDP4_SENDM
BPF_CGROUP_UDP6_RECVM
BPF_CGROUP_UDP6_SENDM
BPF_CGROUP_UNIX_CONNE
BPF_CGROUP_UNIX_SENDM
BPF_CGROUP_UNIX_RECVM
BPF_CGROUP_UNIX_GETPE

BPF_CGROUP_UNIX_GETSO
BPF_CGROUP_INET4_POST

BPF_CGROUP_INET6_POST
BPF_CGROUP_INET_SOCK_

cgroup/dev
cgroup/skb
cgroup_skb/egress
cgroup_skb/ingress
cgroup/getsockopt
cgroup/setsockopt
cgroup/bind4
cgroup/connect4
cgroup/getpeername4
cgroup/getsockname4
cgroup/bind6
cgroup/connect6
cgroup/getpeername6
cgroup/getsockname6
cgroup/recvmsg4
cgroup/sendmsg4
cgroup/recvmsg6b
cgroup/sendmsg6
cgroup/connect_unix
cgroup/sendmsg_unix
cgroup/recvmsg_unix
cgroup/
getpeername_unix
cgroup/
getsockname_unix
cgroup/post_bind4
cgroup/post_bind6
cgroup/sock_create

continues on next page

libbpf

Table 1 - continued from previous page

Program Type Attach Type ELF Section Name Sleepable
cgroup/sock
BPF_CGROUP_INET_SOCK_! cgroup/sock_release
BPF_PROG_TYPE_CGROUP_. BPF_CGROUP_SYSCTL cgroup/sysctl
BPF_PROG_TYPE_EXT freplace+!
BPF_PROG_TYPE_FLOW_DI: BPF_FLOW_DISSECTOR flow_dissector
BPF_PROG_TYPE_KPROBE kprobe+2
kretprobe+ae 2
ksyscall+’
kretsyscall+Faee 93
uprobe+*
uprobe. s+ 4 Yes
uretprobe+e o 4
uretprobe. s+ 9 4 Yes
usdt+
BPF_TRACE_KPROBE_MULT‘kprobe.multi+6
kretprobe.
multi+Page 9,6
BPF_PROG_TYPE_LIRC_MO! BPF_LIRC_MODE2 lirc_mode2
BPF_PROG_TYPE_LSM BPF_LSM_CGROUP 1sm_cgroup+
BPF_LSM_MAC 1sm+’
1sm. s+Feee .7 Yes
BPF_PROG_TYPE_LWT_IN lwt_in
BPF_PROG_TYPE_LWT_OUT lwt_out
BPF_PROG_TYPE_LWT_SEG! lwt_seg6local
BPF_PROG_TYPE_LWT_XMI' lwt_xmit
BPF_PROG_TYPE_PERF_EV. perf_event
BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE raw_tp.w+8
raw_tracepoint.w+
BPF_PROG_TYPE_RAW_TRACEPOINT raw_tp+'ee? 8
raw_tracepoint+
BPF_PROG_TYPE_SCHED_A(action
BPF_PROG_TYPE_SCHED_CLS classifier
tc
BPF_PROG_TYPE_SK_LOOK! BPF_SK_LOOKUP sk_lookup
BPF_PROG_TYPE_SK_MSG BPF_SK_MSG_VERDICT sk_msg
BPF_PROG_TYPE_SK_REUS. BPF_SK_REUSEPORT_SELE' sk_reuseport/migrate
BPF_SK_REUSEPORT_SELE' sk_reuseport
BPF_PROG_TYPE_SK_SKB sk_skb
BPF_SK_SKB_STREAM_PAR: sk_skb/stream_parser
BPF_SK_SKB_STREAM_VER! sk_skb/
stream_verdict
BPF_PROG_TYPE_SOCKET_. socket
BPF_PROG_TYPE_SOCK_OP: BPF_CGROUP_SOCK_OPS sockops
BPF_PROG_TYPE_STRUCT_! struct_ops+
BPF_PROG_TYPE_SYSCALL syscall Yes
BPF_PROG_TYPE_TRACEPOINT tp+9
tracepoint+"aee 9
BPF_PROG_TYPE_TRACING BPF_MODIFY_RETURN fmod_ret+"¢ % !
fmod_ret.s+Faee? ! Yes
BPF_TRACE_FENTRY fentry+aee?d |

continues on next page

Chapter 2. Program Types and ELF Sections

libbpf

Table 1 - continued from previous page

Program Type Attach Type ELF Section Name Sleepable
fentry.s+"e% 1 Yes
BPF_TRACE_FEXIT fexit+!
fexit.s+! Yes
BPF_TRACE_ITER iter+!?
iter.s+!” Yes
BPF_TRACE_RAW_TP tp_btf+ !
BPF_PROG_TYPE_XDP BPF_XDP_CPUMAP xdp . frags/cpumap
xdp/cpumap
BPF_XDP_DEVMAP xdp. frags/devmap
xdp/devmap
BPF_XDP xdp. frags
xdp

! The fentry attach format is fentry[.s]/<function>.
2 The kprobe attach format is kprobe/<function>[+<offset>]. Valid characters for function are a-zA-Z0-9_. and offset must be a

valid non-negative integer.

3 The ksyscall attach format is ksyscall/<syscall>.
4 The uprobe attach format is uprobe[.s]/<path>:<function>[+<offset>].

5 The usdt attach format is usdt/<path>:<provider>:<name>.

6 The kprobe .multi attach format is kprobe .multi/<pattern> where pattern supports * and ? wildcards. Valid characters for pattern are

a-zA-Z0-9_.%7?.

7 The 1sm attachment format is 1sm[. s]/<hook>.
8 The raw_tp attach format is raw_tracepoint[.w]/<tracepoint>.

9 The tracepoint attach format is tracepoint/<category>/<name>.
10 The iter attach format is iter[.s]/<struct-name>.

libbpf

10 Chapter 2. Program Types and ELF Sections

CHAPTER
THREE

API NAMING CONVENTION

libbpf API provides access to a few logically separated groups of functions and types. Every group has its own naming
convention described here. It’s recommended to follow these conventions whenever a new function or type is added to
keep libbpf API clean and consistent.

All types and functions provided by libbpf API should have one of the following prefixes: bpf_, btf_, libbpf_,
btf_dump_, ring_buffer_, perf buffer_.

3.1 System call wrappers

System call wrappers are simple wrappers for commands supported by sys_bpf system call. These wrappers should go
to bp£f.h header file and map one to one to corresponding commands.

For example bpf_map_lookup_elem wraps BPF_MAP_LOOKUP_ELEM command of sys_bpf, bpf_prog_attach wraps
BPF_PROG_ATTACH, etc.

3.2 Objects

Another class of types and functions provided by libbpf API is “objects” and functions to work with them. Objects
are high-level abstractions such as BPF program or BPF map. They’re represented by corresponding structures such
as struct bpf_object, struct bpf_program, struct bpf_map, etc.

Structures are forward declared and access to their fields should be provided via corresponding getters and setters rather
than directly.

These objects are associated with corresponding parts of ELF object that contains compiled BPF programs.

For example struct bpf_object represents ELF object itself created from an ELF file or from a buffer, struct
bpf_program represents a program in ELF object and struct bpf_map is a map.

Functions that work with an object have names built from object name, double underscore and part that describes
function purpose.

For example bpf_object__open consists of the name of corresponding object, bpf_object, double underscore and
open that defines the purpose of the function to open ELF file and create bpf_object from it.

All objects and corresponding functions other than BTF related should go to 1ibbpf.h. BTF types and functions
should go to btf.h.

11

libbpf

3.3 Auxiliary functions

Auxiliary functions and types that don’t fit well in any of categories described above should have 1ibbpf_ prefix, e.g.
libbpf_get_error or 1ibbpf_prog_type_by_name.

3.4 ABI

libbpf can be both linked statically or used as DSO. To avoid possible conflicts with other libraries an application is
linked with, all non-static libbpf symbols should have one of the prefixes mentioned in API documentation above. See
API naming convention to choose the right name for a new symbol.

3.5 Symbol visibility

libbpf follow the model when all global symbols have visibility “hidden” by default and to make a symbol visible it
has to be explicitly attributed with LIBBPF_API macro. For example:

[LIBBPF_API int bpf_prog_get_fd_by_id(__u32 id);

This prevents from accidentally exporting a symbol, that is not supposed to be a part of ABI what, in turn, improves
both libbpf developer- and user-experiences.

3.6 ABI versioning

To make future ABI extensions possible libbpf ABI is versioned. Versioning is implemented by 1ibbpf.map version
script that is passed to linker.

Version name is LIBBPF_ prefix + three-component numeric version, starting from 0.0. 1.

Every time ABI is being changed, e.g. because a new symbol is added or semantic of existing symbol is changed, ABI
version should be bumped. This bump in ABI version is at most once per kernel development cycle.

For example, if current state of 1ibbpf.map is:

LIBBPF_0.0.1 {
global:
bpf_func_a;
bpf_func_b;
local:
N
1

, and a new symbol bpf_func_c is being introduced, then 1ibbpf.map should be changed like this:

LIBBPF_0.0.1 {
global:
bpf_func_a;
bpf_func_b;
local:
N
3

(continues on next page)

12 Chapter 3. APl naming convention

libbpf

(continued from previous page)

LIBBPF_0.0.2 {

global:
bpf_func_c;

} LIBBPF_0.0.1;

, where new version LIBBPF_0.0.2 depends on the previous LIBBPF_0.0. 1.

Format of version script and ways to handle ABI changes, including incompatible ones, described in details in [1].

3.7 Stand-alone build

Under https://github.com/libbpf/libbpf there is a (semi-)automated mirror of the mainline’s version of libbpf for a
stand-alone build.

However, all changes to 1ibbpf’s code base must be upstreamed through the mainline kernel tree.

3.7. Stand-alone build 13

https://github.com/libbpf/libbpf

libbpf

14 Chapter 3. APl naming convention

CHAPTER
FOUR

API DOCUMENTATION CONVENTION

The libbpf API is documented via comments above definitions in header files. These comments can be rendered by
doxygen and sphinx for well organized html output. This section describes the convention in which these comments
should be formatted.

Here is an example from btf.h:

/;’: *

* @brief **btf__new()** creates a new instance of a BTF object from the raw
* bytes of an ELF's BTF section

* @param data raw bytes

* @param size number of bytes passed in ‘data’

* @return new BTF object instance which has to be eventually freed with

* **htf _free()**

* On error, error-code-encoded-as-pointer is returned, not a NULL. To extract
* error code from such a pointer ‘libbpf_get_error() " should be used. If

* *libbpf_set_strict_mode(LIBBPF_STRICT_CLEAN_PTRS)' is enabled, NULL is

* returned on error instead. In both cases thread-local ‘errno” variable is

* always set to error code as well.

-.'.-/

The comment must start with a block comment of the form /**’.

The documentation always starts with a @brief directive. This line is a short description about this APL. It starts with
the name of the API, denoted in bold like so: api_name. Please include an open and close parenthesis if this is a
function. Follow with the short description of the API. A longer form description can be added below the last directive,
at the bottom of the comment.

Parameters are denoted with the @param directive, there should be one for each parameter. If this is a function with a
non-void return, use the @return directive to document it.

4.1 License

libbpf is dual-licensed under LGPL 2.1 and BSD 2-Clause.

15

libbpf

4.2 Links

[1] https://www.akkadia.org/drepper/dsohowto.pdf
(Chapter 3. Maintaining APIs and ABIs).

16 Chapter 4. APl documentation convention

https://www.akkadia.org/drepper/dsohowto.pdf

CHAPTER
FIVE

BUILDING LIBBPF

libelf and zlib are internal dependencies of libbpf and thus are required to link against and must be installed on the
system for applications to work. pkg-config is used by default to find libelf, and the program called can be overridden
with PKG_CONFIG.

If using pkg-config at build time is not desired, it can be disabled by setting NO_PKG_CONFIG=1 when calling make.
To build both static libbpf.a and shared libbpf.so:

$ cd src
$ make

To build only static libbpf.a library in directory build/ and install them together with libbpf headers in a staging directory
root/:

$ cd src
$ mkdir build root
$ BUILD_STATIC_ONLY=y OBJDIR=build DESTDIR=root make install

To build both static libbpf.a and shared libbpf.so against a custom libelf dependency installed in /build/root/ and install
them together with libbpf headers in a build directory /build/root/:

$ cd src
$ PKG_CONFIG_PATH=/build/root/1ib64/pkgconfig DESTDIR=/build/root make

All general BPF questions, including kernel functionality, libbpf APIs and their application, should be sent to
bpf@vger.kernel.org mailing list. You can subscribe to the mailing list search its archive. Please search the archive
before asking new questions. It may be that this was already addressed or answered before.

17

mailto:bpf@vger.kernel.org
http://vger.kernel.org/vger-lists.html#bpf
https://lore.kernel.org/bpf/

	libbpf Overview
	BPF App Lifecycle and libbpf APIs
	BPF Object Skeleton File
	Other Advantages of Using Skeleton File

	BPF Helpers
	BPF CO-RE (Compile Once – Run Everywhere)
	Getting Started with libbpf
	libbpf and Rust
	Additional Documentation

	Program Types and ELF Sections
	API naming convention
	System call wrappers
	Objects
	Auxiliary functions
	ABI
	Symbol visibility
	ABI versioning
	Stand-alone build

	API documentation convention
	License
	Links

	Building libbpf

