

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

BPF/libbpf usage and questions

Please check out [libbpf-bootstrap](https://github.com/libbpf/libbpf-bootstrap)
and [the companion blog post](https://nakryiko.com/posts/libbpf-bootstrap/) for
the examples of building BPF applications with libbpf.
[libbpf-tools](https://github.com/iovisor/bcc/tree/master/libbpf-tools) are also
a good source of the real-world libbpf-based tracing tools.

All general BPF questions, including kernel functionality, libbpf APIs and
their application, should be sent to bpf@vger.kernel.org mailing list. You can
subscribe to it [here](http://vger.kernel.org/vger-lists.html#bpf) and search
its archive [here](https://lore.kernel.org/bpf/). Please search the archive
before asking new questions. It very well might be that this was already
addressed or answered before.

bpf@vger.kernel.org is monitored by many more people and they will happily try
to help you with whatever issue you have. This repository’s PRs and issues
should be opened only for dealing with issues pertaining to specific way this
libbpf mirror repo is set up and organized.

Build
[![Build Status](https://travis-ci.com/libbpf/libbpf.svg?branch=master)](https://travis-ci.com/github/libbpf/libbpf)
[![Total alerts](https://img.shields.io/lgtm/alerts/g/libbpf/libbpf.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/libbpf/libbpf/alerts/)
[![Coverity](https://img.shields.io/coverity/scan/18195.svg)](https://scan.coverity.com/projects/libbpf)
=====
libelf is an internal dependency of libbpf and thus it is required to link
against and must be installed on the system for applications to work.
pkg-config is used by default to find libelf, and the program called can be
overridden with PKG_CONFIG.

If using pkg-config at build time is not desired, it can be disabled by
setting NO_PKG_CONFIG=1 when calling make.

To build both static libbpf.a and shared libbpf.so:
`bash
$ cd src
$ make
`

To build only static libbpf.a library in directory
build/ and install them together with libbpf headers in a staging directory
root/:
`bash
$ cd src
$ mkdir build root
$ BUILD_STATIC_ONLY=y OBJDIR=build DESTDIR=root make install
`

To build both static libbpf.a and shared libbpf.so against a custom libelf
dependency installed in /build/root/ and install them together with libbpf
headers in a build directory /build/root/:
`bash
$ cd src
$ PKG_CONFIG_PATH=/build/root/lib64/pkgconfig DESTDIR=/build/root make install
`

Distributions

	Distributions packaging libbpf from this mirror:
	
	[Fedora](https://src.fedoraproject.org/rpms/libbpf)

	[Gentoo](https://packages.gentoo.org/packages/dev-libs/libbpf)

	[Debian](https://packages.debian.org/source/sid/libbpf)

	[Arch](https://www.archlinux.org/packages/extra/x86_64/libbpf/)

	[Ubuntu](https://packages.ubuntu.com/source/groovy/libbpf)

	[Alpine](https://pkgs.alpinelinux.org/packages?name=libbpf)

	Benefits of packaging from the mirror over packaging from kernel sources:
	
	Consistent versioning across distributions.

	No ties to any specific kernel, transparent handling of older kernels.
Libbpf is designed to be kernel-agnostic and work across multitude of
kernel versions. It has built-in mechanisms to gracefully handle older
kernels, that are missing some of the features, by working around or
gracefully degrading functionality. Thus libbpf is not tied to a specific
kernel version and can/should be packaged and versioned independently.

	Continuous integration testing via
[TravisCI](https://travis-ci.org/libbpf/libbpf).

	Static code analysis via [LGTM](https://lgtm.com/projects/g/libbpf/libbpf)
and [Coverity](https://scan.coverity.com/projects/libbpf).

	Package dependencies of libbpf, package names may vary across distros:
	
	zlib

	libelf

BPF CO-RE (Compile Once – Run Everywhere)

Libbpf supports building BPF CO-RE-enabled applications, which, in contrast to
[BCC](https://github.com/iovisor/bcc/), do not require Clang/LLVM runtime
being deployed to target servers and doesn’t rely on kernel-devel headers
being available.

It does rely on kernel to be built with [BTF type
information](https://www.kernel.org/doc/html/latest/bpf/btf.html), though.
Some major Linux distributions come with kernel BTF already built in:

	Fedora 31+

	RHEL 8.2+

	OpenSUSE Tumbleweed (in the next release, as of 2020-06-04)

	Arch Linux (from kernel 5.7.1.arch1-1)

	Ubuntu 20.10

	Debian 11 (amd64/arm64)

If your kernel doesn’t come with BTF built-in, you’ll need to build custom
kernel. You’ll need:

	pahole 1.16+ tool (part of dwarves package), which performs DWARF to
BTF conversion;

	kernel built with CONFIG_DEBUG_INFO_BTF=y option;

	you can check if your kernel has BTF built-in by looking for
/sys/kernel/btf/vmlinux file:

`shell
$ ls -la /sys/kernel/btf/vmlinux
-r--r--r--. 1 root root 3541561 Jun 2 18:16 /sys/kernel/btf/vmlinux
`

To develop and build BPF programs, you’ll need Clang/LLVM 10+. The following
distributions have Clang/LLVM 10+ packaged by default:

	Fedora 32+

	Ubuntu 20.04+

	Arch Linux

	Ubuntu 20.10 (LLVM 11)

	Debian 11 (LLVM 11)

	Alpine 3.13+

Otherwise, please make sure to update it on your system.

The following resources are useful to understand what BPF CO-RE is and how to
use it:
- [BPF Portability and CO-RE](https://nakryiko.com/posts/bpf-portability-and-co-re/)
- [HOWTO: BCC to libbpf conversion](https://nakryiko.com/posts/bcc-to-libbpf-howto-guide/)
- [libbpf-tools in BCC repo](https://github.com/iovisor/bcc/tree/master/libbpf-tools)

contain lots of real-world tools converted from BCC to BPF CO-RE. Consider
converting some more to both contribute to the BPF community and gain some
more experience with it.

Details

This is a mirror of [bpf-next Linux source
tree](https://kernel.googlesource.com/pub/scm/linux/kernel/git/bpf/bpf-next)’s [https://kernel.googlesource.com/pub/scm/linux/kernel/git/bpf/bpf-next)'s]
tools/lib/bpf directory plus its supporting header files.

All the gory details of syncing can be found in scripts/sync-kernel.sh
script.

Some header files in this repo (include/linux/*.h) are reduced versions of
their counterpart files at
[bpf-next](https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/)’s [https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/)'s]
tools/include/linux/*.h to make compilation successful.

License

This work is dual-licensed under BSD 2-clause license and GNU LGPL v2.1 license.
You can choose between one of them if you use this work.

SPDX-License-Identifier: BSD-2-Clause OR LGPL-2.1

libbpf API naming convention

libbpf API provides access to a few logically separated groups of
functions and types. Every group has its own naming convention
described here. It’s recommended to follow these conventions whenever a
new function or type is added to keep libbpf API clean and consistent.

All types and functions provided by libbpf API should have one of the
following prefixes: bpf_, btf_, libbpf_, xsk_,
perf_buffer_.

System call wrappers

System call wrappers are simple wrappers for commands supported by
sys_bpf system call. These wrappers should go to bpf.h header file
and map one-on-one to corresponding commands.

For example bpf_map_lookup_elem wraps BPF_MAP_LOOKUP_ELEM
command of sys_bpf, bpf_prog_attach wraps BPF_PROG_ATTACH, etc.

Objects

Another class of types and functions provided by libbpf API is “objects”
and functions to work with them. Objects are high-level abstractions
such as BPF program or BPF map. They’re represented by corresponding
structures such as struct bpf_object, struct bpf_program,
struct bpf_map, etc.

Structures are forward declared and access to their fields should be
provided via corresponding getters and setters rather than directly.

These objects are associated with corresponding parts of ELF object that
contains compiled BPF programs.

For example struct bpf_object represents ELF object itself created
from an ELF file or from a buffer, struct bpf_program represents a
program in ELF object and struct bpf_map is a map.

Functions that work with an object have names built from object name,
double underscore and part that describes function purpose.

For example bpf_object__open consists of the name of corresponding
object, bpf_object, double underscore and open that defines the
purpose of the function to open ELF file and create bpf_object from
it.

Another example: bpf_program__load is named for corresponding
object, bpf_program, that is separated from other part of the name
by double underscore.

All objects and corresponding functions other than BTF related should go
to libbpf.h. BTF types and functions should go to btf.h.

Auxiliary functions

Auxiliary functions and types that don’t fit well in any of categories
described above should have libbpf_ prefix, e.g.
libbpf_get_error or libbpf_prog_type_by_name.

AF_XDP functions

AF_XDP functions should have an xsk_ prefix, e.g.
xsk_umem__get_data or xsk_umem__create. The interface consists
of both low-level ring access functions and high-level configuration
functions. These can be mixed and matched. Note that these functions
are not reentrant for performance reasons.

Please take a look at Documentation/networking/af_xdp.rst in the Linux
kernel source tree on how to use XDP sockets and for some common
mistakes in case you do not get any traffic up to user space.

libbpf ABI

libbpf can be both linked statically or used as DSO. To avoid possible
conflicts with other libraries an application is linked with, all
non-static libbpf symbols should have one of the prefixes mentioned in
API documentation above. See API naming convention to choose the right
name for a new symbol.

Symbol visibility

libbpf follow the model when all global symbols have visibility “hidden”
by default and to make a symbol visible it has to be explicitly
attributed with LIBBPF_API macro. For example:

LIBBPF_API int bpf_prog_get_fd_by_id(__u32 id);

This prevents from accidentally exporting a symbol, that is not supposed
to be a part of ABI what, in turn, improves both libbpf developer- and
user-experiences.

ABI versionning

To make future ABI extensions possible libbpf ABI is versioned.
Versioning is implemented by libbpf.map version script that is
passed to linker.

Version name is LIBBPF_ prefix + three-component numeric version,
starting from 0.0.1.

Every time ABI is being changed, e.g. because a new symbol is added or
semantic of existing symbol is changed, ABI version should be bumped.
This bump in ABI version is at most once per kernel development cycle.

For example, if current state of libbpf.map is:

, and a new symbol bpf_func_c is being introduced, then
libbpf.map should be changed like this:

, where new version LIBBPF_0.0.2 depends on the previous
LIBBPF_0.0.1.

Format of version script and ways to handle ABI changes, including
incompatible ones, described in details in [1].

Stand-alone build

Under https://github.com/libbpf/libbpf there is a (semi-)automated
mirror of the mainline’s version of libbpf for a stand-alone build.

However, all changes to libbpf’s code base must be upstreamed through
the mainline kernel tree.

License

libbpf is dual-licensed under LGPL 2.1 and BSD 2-Clause.

Links

	[1] https://www.akkadia.org/drepper/dsohowto.pdf
	(Chapter 3. Maintaining APIs and ABIs).

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

